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a b s t r a c t 

Object-oriented modelling of cyber-physical systems with Modelica and similar environments has brought 

many advantages, especially the efficient re-use of models and thus the possibility of creating powerful 

multi-domain libraries. Unfortunately, the models have become highly complex, which causes serious 

problems during processing and execution. Consequently, verification and debugging is becoming an in- 

creasingly challenging task. The continuous investigation of simplifications and reductions in all phases 

of model developments is thus urgent. 

The present paper deals with reduction methods based on metric ranking and preserve realisation, which 

means that the structure and the parameters of the model remain physically interpretable. Two model- 

reduction methods are described and implemented in Open Modelica. The first operates on a set of 

differential-algebraic equations, and the second is based on modified bond-graphs-reduction techniques. 

The latter approach is suitable for component-based models in Modelica that are usually represented 

graphically with object diagrams. The paper briefly describes the research area, the problems of the 

adoption of the developed model reduction techniques to the Modelica environments, and the final im- 

plementation. Both proposed approaches are tested on the model of a car suspension system and briefly 

discussed. 

© 2020 Elsevier Inc. All rights reserved. 
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. Introduction 

Modelling is an iterative process. In the early stages of model

evelopment, relatively simple conceptual models are created,

hich can answer only a few general design questions and usu-

lly have low accuracy ( Murray-Smith, 2009; Cellier, 1991; Matko

t al., 1992 ). Later, as more data and more knowledge about the

odelled system become available, the accuracy of the model is

requently improved by including more details in it. However, a

etailed model leads to complexity, which can cause serious prob-

ems during processing and/or execution. Therefore, models should

egularly be simplified in order to remain useful and usable. 

This latter requirement is more difficult to achieve in a con-

emporary component-based approach to modelling, in which a

odel is built up of previously prepared building blocks (i.e., com-

onents or submodels). Such an approach is especially efficient

hen using components from different fields (e.g., multi-domain,
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yber-physical models) ( Modelica Association, 2010; Modelica As-

ociation, 2012; Open Source Modelica Consortium, 2012; Fritzson,

014; Sodja, 2012; Zupan ̌ci ̌c and Sodja, 2013 ). 

The advantage of this approach is manifold: 

• rapid model development – detailed models can be built from

well-tested components; only the component interfaces need to

be specified, and the detail design of each component can be

abstracted away; 
• models are more transparent and understandable - it is ex-

tremely important for an efficient collaboration inside an inter-

disciplinary group; 
• it is easier to verify and validate the overall model because

components have been tested previously. 

However, component-based modelling can also bring some dis-

dvantages: 

• it is more tempting to build an overly complex model, which

can also make verification and validation more difficult; 
• it is more difficult to solve numerical problems, which usually

arise suddenly and unpredictably when an appropriate level of

complexity is reached; 

https://doi.org/10.1016/j.jss.2019.110517
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
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• not all modelling issues can be addressed during the

component-models’ design; the modeler must often possess ad-

vanced knowledge about the modelling methodologies and sup-

positions used in the components’ design, so that the compo-

nents are not used in a way that the original developer never

intended; otherwise, the model might be physically inconsis-

tent or numerical difficulties may appear during the simulation.

It is thus very important that the component model library (i.e.,

the collection of component models) be adequately documented

and that the most common pitfalls when using the components

from the library be described. Nevertheless, the increasing com-

plexity of models used in contemporary engineering applications

requires more than just exhaustive documentation. Modelling en-

vironments should include various tools to help the user assess the

quality of the model (e.g., visualisation tools). 

Finally, a model should not be more complex than required

for the given task. This goal is difficult to achieve in component-

based modelling. One approach to identify overly-detailed parts

of the model is to use model-reduction techniques that prune

the components of the model that have negligible effects on the

salient model dynamics. Although the model-reduction techniques

of dynamic-systems’ models are an active research topic, there are

hardly any tools to be found in industrially relevant modelling en-

vironments, such as those supporting the modelling language Mod-

elica. The major reason for this is the heterogeneity of the models

(e.g., the different formulation of the sub-models, which impairs

the creation of efficient automated model-reduction tools. 

In the rest of this paper, we describe our approach to creating

such a tool for model reduction that is applicable for a large num-

ber of complex cyber-physical models implemented in the Model-

ica modelling language. Section 2 classifies reduction methods into

several categories. A special class of model-reduction methods that

retain the formulation (i.e., realisation) of the original model are

introduced. In the final part, some facts regarding Modelica mod-

els and model reduction techniques are presented. 

Section 3 is the main contribution of the paper and describes

the reduction of systems defined with differential-algebraic equa-

tions (DAE). Elementary reduction operations are introduced, and

the problems with the solvability and numerical stability of re-

duced systems are discussed. The ranking procedure is the central

part of the proposed approach. We present ranking with a one-step

solver and ranking by statistical properties. The implementation in

Open Modelica is then described. The section concludes with an

example of a car suspension system using both ranking procedures.

The results confirm the success of the proposed procedures. 

As at least on higher hierarchical levels, the model compo-

nents in Modelica are usually described using object diagrams

Section 4 describes the reduction possibilities for such models.

In this case, energy-based metrics are used. Unfortunately. energy

flows are not explicitly available in Modelica components but can

be calculated from the information available in component connec-

tors. Therefore, we added the instrumentation phase in the model

translation procedure. Here, the equations for energy flows calcu-

lations are added, which enables the metrics and ranking calcu-

lations after translation and simulation. The same example as in

Section 3 was used. 

Both approaches produced similar results. 

2. Model reduction techniques 

Engineers use experience and intuition to determine the impor-

tant parts of a model that have the highest impact on a system’s

dominant dynamics or on the model’s simulation response in a

specific scenario. In an attempt to diminish the reliance on sub-
ective factors, such as experience, numerous model-simplification

nd reduction methods have been developed ( Ersal et al., 2008 ). 

In this paper, a clear distinction is made between model sim-

lification and model reduction. The simplification indicates that

odifications to a model perform more concise representations

ut the behaviour of the original and the simplified models are ex-

ctly the same (e.g., the algebraic elimination of an algebraic loop

r the simplification of a block scheme of a control system using

he algebra of block schemes). In contrast, the reduction proce-

ure omits some less interesting aspects of the behaviour of the

riginal model. Hence, the reduction only represents a portion of

he behavior of the original model (e.g., parts of the model can

e exchanged with simpler ones, such as a lower order or a lin-

arised submodel). Therefore, the resulting reduced model is thus

alid only within a limited range. 

.1. Classification of model-reduction techniques 

Most model-reduction techniques consist of running a series of

imulations, ranking the individual terms, elements or components

ith the appropriate metric based on the results obtained by simu-

ation and approximating (or removing) those parts that fall below

 certain threshold ( Chang et al., 2001 ). The choice of the ranking

etric and the elementary reduction operations depends on how

he model is formulated and may be limited by the modelling do-

ains. Based on the principles on which the reduction methods

perate, they can be classified into three categories ( Ye, 2002 ): 

• methods based on a mathematical manipulation of the relations

in the model; 
• methods based on a physical interpretation of the system’s dy-

namics; 
• methods that are a combination of the previous two items. 

In contrast, Ersal et al. (2008) classify model-reduction tech-

iques into frequency-, projection-, optimisation-, and energy-

ased categories. Frequency-based reduction techniques aim at

runing the dynamics outside of some frequency range, e.g., re-

oving ‘fast’ dynamics. Similarly, projection-based techniques are

sed in an attempt to find a lower dimensional portion of the sys-

em’s state space (a subspace) that describes the salient dynamics

dequately. Optimisation-based techniques are a more formal ap-

roach to obtain an optimal reduced model subject to a complexity

onstraint. Finally, energy-based model-reduction techniques pre-

ume that the components associated with a small energy flow

lso have a small effect on the dominant system’s dynamics. How-

ver, the classifications are not strict. In other words, a certain

ethod may belong to several categories. 

.2. Preservation of realisation 

A special class of model-reduction methods are those that re-

ain the formulation (i.e., realisation) of the original model, which

re so-called realisation-preserving model-reduction methods. 

Preservation of realisation means that the structure and param-

ters of the reduced model must remain physically interpretable.

his is an important property in determining overly-detailed parts

f the model. The reduced models can be simulated using the

ame tool as the original model (which in the case of non-

ealisation-preserving methods is not always true ( Sheehan, 1999 )).

reservation of realisation is extremely useful for more efficient

erification purposes. 

However, most model-reduction techniques do not preserve re-

lisation, because such a requirement hinders their performance. If

he formulation of the model is allowed to change, a much greater

eduction of the model’s complexity can be achieved, so that the
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issimilarity of the full and reduced model behaviours falls within

he prescribed error bounds. 

.3. Realisation-preserving model-reduction methods and Modelica 

To the best of the authors’ knowledge, there were no

ealisation-preserving model-reduction methods developed for 

odels implemented in Modelica. Nevertheless, corresponding

echniques were developed for a modelling formalism that sup-

orts the formulation of models using similar concepts as these in

odelica ( Modelica Association, 2010; Modelica Association, 2012;

pen Source Modelica Consortium, 2012; Fritzson, 2014 ). 

Modelica is a language for modelling complex physical systems

ith (hybrid) differential-algebraic equations (DAE). For the pur-

ose of structuring large models, many object-oriented concepts

re supported by the language (e.g., inheritance, encapsulation,

tc.). Especially notable are the connections , which are a convenient

ay to avoid explicitly stating the structural equations (e.g., Kirch-

off’s laws) in order to describe the relations between submodels.

 set of connected submodels can be presented graphically with a

chematic diagram (also called an object diagram). 

Large complex models in Modelica are normally hierarchically

omposed: at the lowest levels, the equations are entered directly,

nd at higher hierarchical levels, a graphical description with ob-

ect diagrams is preferred. Therefore, two kinds of reduction tech-

iques are needed: 

• the reduction techniques for the differential-algebraic equa-

tions; 
• the reduction techniques for object diagrams. 

. Reduction of differential-algebraic equations systems 

The most general representation of a dynamical system is the

ifferential algebraic equation (DAE) 

 ( ̇ x , x , y , t) = 0 (1)

here x is the vector of systems states, ˙ x is the vector of corre-

ponding derivatives, y is the vector of algebraic variables, and t is

he independent variable. 

Modelica is based on equations (models that can be imple-

ented in it must be described by equation systems) and, there-

ore, all the Modelica language elements are mapped to differen-

ial, algebraic, and discrete equations. It is thus often useful to in-

pect the equations directly, for example, to verify the model. Nev-

rtheless, the resulting derived equation system is often too large

nd intricate, even for relatively small models, to be readable by

umans or manually investigated. 

Another problem is that effort s to make the component models

ore modular and extendable often lead to an intricate implemen-

ation: the equation systems (i.e., its parts) are cluttered into many

ncomplete (partial) component models. These partial models are

hen combined into a complete component by either inheritance

r replaceable submodels (i.e., submodels that are defined during

he declaration of the model). The partition of an equation system

nto several partial (sub)models entails the use of many auxiliary

ariables that impair the clarity of the flattened model (i.e., the

odel translated into a single equation system). 

For a manual investigation of the model’s underlying equation

ystems, it would thus be preferable to post-process them before

howing them to the user. 

There are numerous equation-system reduction techniques that

re routinely used in a manual derivation of system equations.

owever, most of them are not appropriate for automated model

eduction due to their dependency on the context (i.e., knowledge

f the modelled system’s physics). Then there are also more formal,
odel (order) reduction methods that are applicable only to cer-

ain kinds of DAEs (e.g., Lagrange’s equations Chang et al., 2001 or

xplicit space-state realisations Kokotovic and Sannuti, 1968 ). Re-

ardless of the level of formalisation, the same strategies are used

o reduce the equation system: elementary constituents of the

quation set (in most cases, variables and/or equation terms) are

ither eliminated (i.e., set to zero) or replaced with simpler con-

tituents (e.g., constants). 

In our toolbox ( Sodja and Zupan ̌ci ̌c, 2012; Sodja, 2012 ), we

sed an approach originally developed for the model reduction

f nonlinear DAEs entitled Behavioural model generation (BMod-

en) ( Borchers, 1997; Wichmann, 2004; Sommer et al., 2008 ).

quations were generated from a higher-level description (i.e.,

etlist) of electrical circuits. The method refrains entirely from

aking any supposition about the physics of the modelled system.

 decision about which elemental reduction operation should be

erformed depends entirely on an estimation of how much the

onsidered operation will change the behaviour of the model in

he specific simulation experiment(s). A clear disadvantage of this

pproach is that the model can be rendered nonphysical or even

nsolvable (which indeed often happens). As will be shown in this

ection, the most complicated part of the method (besides the er-

or estimation introduced to the model by elemental reduction op-

rations) is the elimination of illegal reduction operations. 

.1. Elementary reduction operations 

There are several ways of reducing a model while preserving its

ealisation; however, mostly they are either removing some com-

onents of the model or replacing them with simpler ones. In the

quation system, these components can consist of state variables,

tate derivatives, and algebraic variables. The basic DAE expression

see Eq. (1) ) is usually composed of several ( n ) terms (unless it is

 trivial equation, e.g., x = y ) 

 1 ( x , ˙ x , y ) + · · · + t j ( x , ˙ x , y ) + · · · + t n ( x , ˙ x , y ) = 0 (2) 

t j ( x , ˙ x , y ) designates expressions, i.e., terms, of the variables

 , ˙ x , and y . An elementary reduction acting on term t j ( · ) in

q. (2) could thus delete it or replace it with a simple expression,

.e., a constant value or a linearised expression. 

Because elementary-reduction operations can be mutually ex-

lusive, a priority of operations must be established. In most cases,

perations achieving better reduction of the model are preferred

e.g., the deletion of terms before a replacement with a constant

alue). 

In our toolbox, we implemented only term deletion and re-

lacement with constant values, due to their being identified in

he literature as the most effective methods ( Wichmann, 2004 ). 

.2. Solvability and numerical stability 

Reduction operations that remove an equation term or substi-

ute it with a constant cannot be applied on arbitrary equation

erm because they can cause the equation system to become un-

olvable. This is prevented by checking the reduction operation’s

ffect on the solvability of the system before reduction operation

s applied. A further problem is assuring that it will be possible to

nitialise the reduced model. In Modelica, the initialisation problem

iffers from the simulation problem. It comprises the equations of

he simulation problem and possibly additional initial equations.

erivatives are decoupled from the variables, i.e., they are consid-

red as algebraic variables, and a variable may have a fixed initial

alue, i.e., it is considered a constant in initialisation problem, or

nly a guess value. Therefore, if a variable has a fixed non-zero

nitial value and is neglected by the reduction algorithm, i.e., it is

et to zero in the simulation problem, the initialisation problem
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becomes unsolvable. In contrast, if the initial value of the variable

is also updated by the reduction algorithm, the solution of the ini-

tialisation problem might differ from the solution of the original

substantially. An approach presented by Wichmann (2003) is to as-

sert that the reduction operations do not increase the structural

index of the DAE system. However, this degrades performance of

the model reduction method because many reasonable model re-

ductions increase the structural index of the system. Tools support-

ing Modelica are able to perform automatic DAE index reduction;

therefore, an increase of the index should be admissible. More-

over, if the initialisation problem consists of additional equations

that are not present in the simulation problem, the accordance of

these equations with the reduced equation system of the simula-

tion problem must be assured. 

Again, the most reliable way of ensuring the solvability and sta-

bility of the systems is to perform the full simulation after ap-

plying each reduction operation. However, only heuristic tests are

practically useful. For example, it may be required that the reduc-

tion does not change certain structural properties of the equation

system, while those structural properties are characterised by var-

ious DAE indices ( Wichmann, 2004 ). 

In contrast, we implemented few restrictions in Modelica for

the reduction operations used the same algorithms as used by the

Modelica translator ( Bunus, 2004 ) to verify whether the equation

system is well posed (i.e., if there is the same number of equations

and variables, whereby the latter can be uniquely assigned to the

equations from which shall be solved). 

3.3. Ranking procedures 

3.3.1. Ranking by one-step solver 

The exact error introduced by each reduction operation can be

acquired by simulating the model that was previously reduced by a

corresponding elementary operation. This yields a perfect ranking

but, due to the enormous computational effort required, it does

not have any practical value and can be used only for verification

of more practical approaches. 

However, a computationally non-demanding estimate of how

much a solution [ 
˜ x 

˜ y 
] of the reduced model ˜ F would diverge from

the solution [ 
x 

y 
] of the full model F , i.e.: 

F ( ̇ x , x , y , t) = 0 , (3)

can be obtained by inserting the values of the full-model vari-

ables (simulation results) at several time instants (e.g., selected

randomly or equidistantly) into the set of reduced equations: 

˜ F ( ̇ x , x , y , t) = δ (4)

This yields a residual vector δ that indicates how similar the re-

duced and full models are: small changes to the original equation

system result in a smaller residual vector. 

However, the error ranking based on the residual vector is

mostly of poor quality ( Wichmann, 2003 ) and, therefore, a fur-

ther improvement was introduced by Wichmann (2003) , in which

the exact solution vector [ 
x 

y 
] is taken as an initial estimate for the

Newton-Raphson numerical iteration that is used to estimate the

solution vector [ 
˜ x 

˜ y 
] of the reduced equation at the time instant t k :[

x ∗
k 

y ∗
k 

]
= 

[
x k 
y k 

]
− J −1 

˜ F 
( x k , ˙ x k , y k ) · ˜ F ( x k , ˙ x k , y k ) (5)

In Eq. (5) , ˙ x k , x k and y k are solution of the original system, ˜ F and

J ˜ are modified system and its Jacobian matrix respectively while
F 
 

∗
k 

and y ∗
k 

are corresponding estimates of the solution ˜ x and ˜ y of

he simplified system. 

Usually, only one iteration of Newton-Raphson method is im-

lemented as it is normally sufficient for the appropriate estima-

ion of the solution of the simplified system. In general, several

terations can also be implemented. 

Finally, predicted error εk of the modification, i.e., reduction op-

ration, at time t k is calculated: 

k = 

∣∣∣∣
∣∣∣∣
[

x ∗
k 

y ∗
k 

]
−

[
x k 
y k 

]∣∣∣∣
∣∣∣∣ = 

∣∣∣∣ J −1 
˜ F 

( x ∗, ˙ x ∗, y ∗) · ˜ F ( x ∗, ˙ x ∗, y ∗) 
∣∣∣∣ (6)

n Eq. (6) , || · || denotes a weighted infinity norm. The weight of

ach vector’s component is the inverse root-mean-square value of

he component that is calculated from the reference simulation re-

ults. 

In Eq. (6) , the evaluation of ˜ F is straightforward, whereas the

acobian matrix J ˜ F requires the calculation of ∂ ˙ x i /∂x i which is not

resent in reference simulation results. However, the estimate of

he value can be obtained from the derivative-approximation for-

ulas. For example, a general n -th order backward-differentiation

ormula (BDF) is given by: 

˙  k = 

1 

h 

( 

a 0 · x k + 

n ∑ 

l=1 

a l · x k −l 

) 

(7)

n Eq. (7) a 0 , a 1 , a 2 ... a n are appropriate coefficients of BDF, and h is

he step size. If Eq. (7) is differentiated with respect to x k , a con-

tant h̄ = a 0 /h is obtained that depends on the order of BDF and

he corresponding step-size. The results of the ranking are strongly

ependent on the choice of h . The literature gives no guidance on

ow to select this value. Therefore, we set it by trial and error. In

ost cases, it was set to the fraction of the fastest time constant

e.g., one fifth). 

The computational cost of the one-step-solver ranking can be

urther substantially reduced by using the Sherman-Morisson the-

rem, given by Eq. (8) , which requires only one inversion of the

acobian matrix for each considered time instant, regardless of the

umber of reduction operations ranked. 

 

−1 
˜ F 

= J −1 
F − (1 + v T J −1 

F e l ) 
−1 J −1 

F e l v 
T J −1 

F (8)

n Eq. (8) , e l is a vector with all the components set to zero, ex-

ept the l th component, which is set to one. The equation system

as modified in the l th equation. The vector v is a gradient of the

ifference between the modified and the original equation. For ex-

mple, if the j th term was removed from Eq. (2) (or replaced with

 constant)then the vector v is: 

 = ∇t j ( ̇ x , x , y ) = 

∂t j ( ̇ x , x , y ) 

∂[ x T , y T ] T 
(9)

More details can be found in Sodja (2012) . 

.3.2. Ranking by statistical properties 

A simple, intuitive, and computationally non-demanding rank-

ng algorithm can be conceived by observing the statistical proper-

ies of the terms in the equations. 

For example, the mean value and the standard deviation of the

 th term’s value ( Eq. (2) ) are calculated as: 

 j = 

1 

n 

n ∑ 

k =1 

t j ( ̇ x k , x k , y k , t k ) (10)

j = 

√ 

1 

n 

n ∑ 

k =1 

(t j ( ̇ x k , x k , y k , t k ) − m j ) 2 (11)

n Eqs. (10) and (11) , n denotes the number of time steps in the

imulation results. 
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Fig. 1. Flow chart of equation-based model reduction. 
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The values m j and σ j for the j th term obtained by Eqs. (10) and

11) are then compared with the values of the other terms of the

ame equation. For this purpose, the relative values of the mean

alue and the standard deviation, m r , j and σ r , j , respectively, are cal-

ulated: 

 r, j = 

m j 

1 
N 

∑ N 
i =1 | m i | 

(12) 

r, j = 

σ j 

1 
N 

∑ N 
i =1 σi 

(13) 

n Eqs. (12) and (13) N denotes the number of terms in the equa-

ion. 

The j th term of the equation can be omitted if both conditions

iven by Eqs. (14) and (15) are fulfilled 

 m r, j | � 1 (14) 

r, j � 1 (15) 

eaning that the term’s mean value and deviation are small in

omparison to the others. Otherwise, if only the condition in

q. (15) is fulfilled, i.e., the term’s value is nearly constant during

he simulation, the term is substituted with its mean value. 

However, the terms’ values in the reference simulation results

ust have an approximately normal distribution so that the de-

cribed ranking procedure is meaningful. This is difficult to ensure

n practice. An example of an inappropriate model is a model with

n integral response that was excited with a step signal. 

Of course, there are many possibilities for further optimisation

f the code implementation. For example, constant terms can eas-

ly be recognised by a structural analysis. In this case, it is obvious

hat the standard deviation is zero without any calculation of sta-

istical properties. 

More details can be found in Sodja (2012) . 

.4. Implementation of model-reduction algorithm 

The basic intention of our implementation of the BModGen (see

ection 3 ) model reduction strategies is to serve as a supplemen-

ary reduction method capable of dealing with models represented

s an equation system. Therefore, we implemented it in the Open-

odelica framework ( Open Source Modelica Consortium, 2012 ). 

An existing implementation ( Sommer et al., 20 0 0 ) of the BMod-

en reduction strategies uses the functionality of general-purpose

omputer algebra software ( Wolfram Research, Inc., 2012 ). In con-

rast, our implementation has to rely on the symbolic manipula-

ion functionality provided by OpenModelica , which is specialised

or the translation of the model’s equations in a favourable simu-

ation form. 

Although reduction strategies employ some of the OpenModel-

ca translation routines, the absence of more general symbolic ma-

ipulation functionality represents a serious limitation. It is thus

ore reasonable to export the model’s equations into a general-

urpose computer algebra environment. However, the focus of our

mplementation is to provide an intelligible presentation of under-

ying equation system of the model. Furthermore, it is rarely use-

ul to investigate the complete equation system of a large complex

odel. Instead, only certain submodels are examined. Therefore,

he information about the system decomposition must be available

o the model reduction algorithm. 

Rather than extending the export with additional information

bout the model structure, we found it to be more advantageous

o integrate reduction algorithm with the OpenModelica translation

ool so that all information about the model is easily accessible.

n the future, the efficiency of the reduction algorithm could be

mproved by utilising an external symbolic mathematical software.
In the current implementation, only two model reduction and

implification strategies are used: the algebraic elimination of aux-

liary variables (i.e., variables that are not of particular interest)

nd the elimination of equation terms only on the base level (in

he left and right-hand side expression of equation). 

The algorithm is illustrated in Fig. 1 , and the steps performed

y the algorithm are the following: 

1. A model is translated and simulated so that numerical refer-

ence values (e.g., trajectories) are obtained. An intermediate

result of the translation, i.e., underlying equation system of

the model, is saved for the later use in reduction procedure.

2. The user decides which submodel (i.e., component of the

model) will be reduced. Equations belonging to this sub-

model must be identified and separated (i.e., marked) from

the rest of the equations. 

3. Algebraic elimination of the variables that were not specified

as variables of interest by the user is carried out. If the user

did not specify any variable of interest, a default choice is

variables whose derivatives are present in the component’s

equation system. 

Unnecessary variables are eliminated in two steps. First,

variables and equations that are not needed for the calcu-

lation of variables of actual interest are removed. This is

achieved by executing Tarjan’s algorithm ( Tarjan, 1972 ) with

appropriate inputs. 

In the translation of the model, Tarjan’s algorithm is used for

the computation of the block lower triangular (BLT) form of

an incidence matrix of an equation system. The latter deter-

mines from which equation a variable will be solved. When

the incidence matrix is converted to the BLT form, the non-

zero square blocks are present on the main diagonal, while

all blocks above the diagonal are zero blocks. The BLT matrix

determines the order in which equations must be solved.

However, several equations might form a strongly-connected

components block, (i.e., algebraic loops); in such a case, the

order of equations in such a block cannot be determined. 
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Fig. 2. Idealised physical model of car suspension. 
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Tarjan’s algorithm works on an incidence matrix represented

as a graph, and it requires a set of starting nodes (i.e., vari-

ables that should be solved from the equation system) as

an input. If only variables of interest are given as staring

nodes, a minimal equation set for computing these variables

will be determined with Tarjan’s algorithm ( Manzoni and

Casella, 2011 ). 

In the second step, algebraic substitution is performed. The

algebraic substitution of trivial equations is also imple-

mented for the translation process. The trivial equations are

equations like x = ±y, x ± y = 0 , x = const., etc. However, the

elimination of only trivial equations is not sufficient for sub-

sequent reduction operations on equations’ terms to be ef-

ficient. Therefore, we extended it to handle arbitrary equa-

tions consisting of two terms, which is still not the final so-

lution of the problem. 

Algebraic equations must reduce the number of simple

equations (consisting of only few equation terms) but it

should also not create overly complex equations that might

affect performance of nonlinear equation solver and are in-

comprehensible to the user. 

However, the intention of the proposed implementation is

to serve as a proof of concept and not a development of an

advanced algebra system. Therefore, this task remains for a

future work. 

4. Elementary reduction operations are ranked according to the

selected ranking metric. In our implementation, only the ba-

sic term removal or replacement with a non-zero constant

is supported, and two ranking methods are implemented:

ranking by one-step solver and by statistical properties. If

there are mutually exclusive reduction operations (e.g., the

removal of a term or replacement with a non-zero constant),

the priority order must be established (e.g., term elimination

before substitution with a constant). 

5. After the ranking is known, the highest-ranked reduction

operations are applied until their cumulative predicted error

does not reach the prescribed error bound. 

To prevent the possibility that the reduced equation sys-

tem will be structurally singular (i.e., the Jacobian matrix of

the system will be singular), the equations are guarded. Be-

fore each reduction operation is applied to the system, it is

checked to verify that there will still be at least one refer-

ence of the variable matched to the equation that is to be

modified 

1 . However, this simple guard does not protect the

consistency of the initialisation problem or the stability of

the model. 

6. The correctness of the reduced model is verified by a

simulation. If the results do not meet the prescribed er-

ror criteria, the algorithm exits with a warning. The user

must then take the proper action (e.g., lowering the error

threshold, choosing another ranking metric, etc.). An attempt

could also be made to recover the algorithm automatically

by reverting some reduction operations and changing the

strategy, but there are no suitable algorithms that would

also be computationally efficient present in the literature

( Wichmann, 2004 ). 

Thus, a reduced model is one output of the algorithm, and

another is a verified reduced model, which is obtained af-

ter the reduction is verified with a simulation. However, the

user might decide against a costly verification by using a
1 A one-step solver ranking calculates the inverse Jacobian matrix for each re- 

duction operation and, therefore, implicitly determines whether the reduction op- 

eration makes the equation system structurally singular (when the inverse Jacobian 

matrix is singular). However, it does not determine singularity for a combination of 

reduction operations. 
simulation. Specifically, the simplified and reduced equation

system obtained as a reduced model can provide sufficient

insight, even if it is potentially wrong, i.e., it violates the

specified error tolerances. 

7. Before the results of the reduction are presented to the user,

the equations of the reduced model are simplified. 

Our user interface of the equation-based reduction algorithm

onsists of a single command reduceDAE() . Before the command

s invoked, the model whose submodel(s)’ shall be reduced must

e simulated. A name of the component (submodel) is then passed

s a first argument to the reduceDAE() or if the complete model

hall be reduced the first argument is omitted. Other commands’

rguments set the following options: the time interval on which

eference simulation results will be considered, the selection of

anking metric, the error tolerance, and the option that the re-

uced equation system is verified by simulation. 

More details can be found in Sodja (2012) . 

.5. Example 

The performance of the implemented equation-system reduc-

ion algorithm is demonstrated on the simple model of a car sus-

ension system illustrated in Fig. 2 . 

There are two different displacements: x s is the displacement

f the suspension system (which is equal to the body of the car)

nd x t is the displacement of the tyre. The mass of the car m s also

ncludes the mass of the suspension system but does not include

he mass of the tyres and wheels, which are collected separately

n the mass m t . The car hits the smooth curb, which is modelled

ith the function (see the input signal x r in Fig. 3 ) 

 r (t) = 

{ 

0 . 4(t − 1) − 0 . 1 
π sin (4 π(t − 1)) ; 1 ≤ t ≤ 1 . 5 

0 ; t < 1 

0 . 2 ; t > 1 . 5 

(16)
Fig. 3. Smooth curb signal. 
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Listing 1. Implementation of the example model. 

Table 1 

Description of notations in the car suspension system. 

x s , v s Displacement, velocity of the suspension system 

x t , v t Displacement, velocity of the tyre 

m s Mass of the the car and suspension system 

m t Mass of the tyre and wheel 

β s Damping coefficient of the suspension system 

β t Damping coefficient of the tyre 

F Ks Nonlinear force of the suspension spring 

F Kt Nonlinear force of the tyre spring 

K s , K 1 s , K 3 s Spring coefficients of the suspension system 

K t , K 1 t , K 3 t Spring coefficients of the tyre 

g Gravitational acceleration 
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Using Newton’s laws for both different displacements, the fol-

owing equations appear: 

˙ x s = v s 
 s ˙ v s = −βs (v s − v t ) − F Ks − m s g 

˙ x t = v t 
 t ˙ v t = −βt (v t − ˙ x r ) − βs (v t − v s ) − F Kt + F Ks − m t g (17) 

F Ks = K 1 s (x s − x t ) + K 3 s (x s − x t ) 
3 

F Kt = K 1 t (x t − x r ) + K 3 t (x t − x r ) 
3 

The notations of parameters and variables used in Fig. 2 and

n Eqs. 17 are described in Table 1 . We can also observe that the

ystem is nonlinear, as both spring forces F Ks and F Kt are modelled

ith nonlinear equations. 
A set of equations that describe the system’s dynamic be-

aviour, derived from an idealised-physical model written accord-

ng to the Modelica syntax, is listed in Listing 1 . 

The first step of the reduction algorithm is an algebraic elim-

nation of the variables not indicated as being of interest. In the

xample model, there are no variables that could be eliminated by

he current implementation of an algebraic-substitution algorithm,

nd the equation system thus remains intact. 

.5.1. Ranking by one-step solver 

After the equation system is algebraically simplified, other re-

uction strategies are applied, i.e., the elimination of insignificant

quation terms. The results of the ranking obtained by the one-

tep solver method is shown in Table 2 with the column ’Error

redicted’. The reduction steps were also verified with simulation

see column ’Error actual’ in Table 2 ). 

The terms are arranged with increasing importance (error). As

t is evident from the last two columns of Table 2 , the error pre-

ictions are reasonably accurate except for the 6th ranked term. 

Fig. 4 shows the responses of the original model and the re-

uced models: the one with the five highest ranked reduction op-

rations applied and the other with the six highest ranked oper-

tions. Displacements of the tyre x t and the suspension system x s 
re presented. While it is difficult to discern the responses of the

riginal and reduced model with the five highest ranked terms re-

oved, the discrepancy of the model with six terms removed is

learly visible. 

The 1st and 3rd highest ranked terms are part of the springs’

onstitutive laws that consist of linear and nonlinear terms. At a

iven operating point, the springs are compressed considerably so
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Table 2 

Ranking obtained with a one-step solver for the equation system in Listing 1 . 

Error [%] 

Rank Term to eliminate predicted actual 

1 st “k1_t ∗ (x_t - x_r) ” in equation at line 25 4 . 6 · 10 −2 6 . 4 · 10 −2 

2 nd “-beta_t ∗ (v_t - v_r) ” in equation at line 24 0.13 0.12 

3 th “k1_s ∗ (x_s - x_t) ” in equation at line 26 0.14 0.17 

4 th “m_t ∗ der(v_t) ” in equation at line 24 1.81 1.03 

5 th “-m_t ∗ g ” in equation at line 24 5.2 2.12 

6 th “-beta_s ∗ (v_s - v_t) ” in equation at line 22 11.6 108.8 

7 th “k3_t ∗ (x_t-x_r) ∧ 3 ” in equation at line 25 13.2 11.032 

... ... ... ... 

Fig. 4. Effect of reduction operations applied. Black and green curves are almost the same. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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that the nonlinear term is prevailing; therefore, neglecting the lin-

ear term is justified (as also proved by simulation). 

Elimination of the terms ranked as 2nd, 4th, and 5th corre-

sponds to neglecting of the damping of the tire, the inertia of

the tire’s mass, and the effect of the gravity on the tire respec-

tively. For the 6th ranked term, it is predicted that it will introduce

only a moderate error to the model’s behaviour but in reality the

response of the model is changed substantially because damping

is almost completely eliminated from the model. This is demon-

strated in Fig. 4 , in which the discrepancy of the model with sex

terms removed is clearly visible. 
Although the order of the reduction steps is correct (at least

or the first five rows), it was shown that the ranking method

an fail to predict correctly the impact of particular operations. As

entioned, slight perturbations of the ranking methods parame-

ers (e.g., selection the parameter h (step size), h̄ = a 0 /h, ) can sig-

ificantly influence the accuracy of the ranking procedure. 

.5.2. Ranking based on statistical properties 

An alternative ranking of the terms according to their mean

alue and standard deviation is shown in Table 3 . 
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Table 3 

Ranking based on the statistical properties of the terms for the equation system in Listing 1 . 

The last two columns, absolute relative mean value | m r | and relative standard deviation σ r , 

are determined using Eq. (12) and (13) . The lines of the table are sorted according to the last 

column. 

Rank Equation term | m r | σ r 

1 st “-m_t ∗ g ” in equation at line 24 0.06 0.0 

2 nd “-m_s ∗ g ” in equation at line 22 0.50 0.0 

3 th “k1_t ∗ (x_t - x_r) ” in equation at line 25 7 . 9 · 10 −4 2 . 9 · 10 −4 

4 th “k1_s ∗ (x_s - x_t) ” in equation at line 26 8 . 3 · 10 −4 3 . 2 · 10 −4 

5 th “-beta_t ∗ (v_t - v_r) ” in equation at line 24 2 . 2 · 10 −7 2 . 8 · 10 −3 

6 th “m_t ∗ der(v_t) ” in equation at line 24 1 . 7 · 10 −6 0.03 

7 th “-beta_s ∗ (v_s - v_t) ” in equation at line 22 1 . 0 · 10 −5 0.10 

8 th “Fk_s ” in equation at line 22 0.5 0.44 

9 th “m_s ∗ der(v_s) ” in equation at line 22 1 . 4 · 10 −4 0.46 

10 th “Fk_s ” in equation at line 24 0.44 0.48 

... ... ... ... 
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If a threshold for a negligible term is selected to be | m r | � 0.1

nd σ r � 0.1, the same equation terms (1 st , 3 rd , 4 th , 5 th , and 6 th )

all under the threshold as the five highest ranked in the previous

anking using the one-step solver method (see Table 2 ). 

The ranking shown in Table 3 was computationally much less

emanding than the ranking shown in Table 2 and yielded almost

dentical results. However, the ranking with the one-step solver is

uch easier to extend the other types of reduction eliminations.

urthermore, the ranking can be done without simulation results

s the procedure can predict the appropriate errors. 

.5.3. Initialisation problem 

The presented model reduction algorithm has some limitations,

hich prevent running the verified reduced model automatically

see Fig. 1 ). The implemented algorithm is not capable of assur-

ng that it will be possible to initialise the reduced model. The

nitialisation problem of the model given with Listing 1 becomes

nvalid when the equation term “m_t ∗ der(v_t) ” at line 24 is

emoved because der(v_t) is no longer a variable of the system,

nd hence the equation at line 18 is invalid. To be able to simu-

ate the reduced model, the equation at line 18 has to be removed

anually. The possible solution in this case could be that, with the

se of appropriate structural analysis, the initial conditions that are

atched with derivatives, which have been completely eliminated

rom the model, could also be eliminated automatically. 

. Reduction of object diagrams on higher hierarchical levels 

The approach was elaborated in detail in Sodja et al. (2018) , in

hich more examples are also available. Here, we added the con-

ent only for completeness and for brief comparison. More details

an also be found in Sodja (2012) . 

The object-oriented modelling approach provides various means

o structure and organise large models. The most important is that

tructural information about the modelled system can be encoded

s a set of submodels connected with each other, whereby the con-

ection also defines the relation, i.e., the interaction between the

omponents. The resulting connection can be represented graph-

cally; in Modelica, it is often referred to as an object diagram,

nd the corresponding structural equations are then generated au-

omatically. 

Therefore, the model-reduction approaches presented in the

revious section could be used to reduce the object diagram by re-

ucing the corresponding equation system and then mapping the

esults of the reduction back to the object diagram so that the

odel’s realisation is preserved ( Sommer et al., 2008 ). 

Nevertheless, the object diagram contains more information

bout the physics of the modelled system; the user might thus find
he ranking metrics with a clear physical interpretation more con-

enient. 

.1. Ranking metrics 

As stated in Section 2.1 , there are various ranking metrics with

 physical meaning, but most of them are difficult to evaluate

hen dealing with models composed of complex components. 

Although different domains are modeled with rather different

chemes and connections, acausal connections for modelling phys-

cal interactions are of special interest. Each (dynamic) interaction

etween physical systems results in an energy exchange between

he systems. Thus, it is highly intuitive to chose the energy-based

etrics for the reduction of the physical-system models. 

The majority of mathematical models are derived from first

rinciples, e.g., the conservation of energy. However, the energy or

ower is usually not explicitly available in the model, i.e., it is not a

ariable of the model. Therefore, a procedure for energy or energy-

ow calculations must be explicitly provided for the model (e.g.,

s a Lyapunov function ( Chang et al., 2001 )) or the model must be

ormulated accordingly, so that the energy can be unambiguously

alculated for each component. 

Energy-based metrics were systematically developed for bond

raphs, a graphical object-oriented modelling formalism, in which

he energy flow associated with each component (i.e., the elemen-

ary submodel) is simple to determine ( Borutsky, 2010 ). Each com-

onent is connected with a bond (acausal link) to the rest of the

odel, and the bond consists of a pair of variables (effort variable

nd flow variable) whose product always equals the power (i.e., the

nergy flow). 

The simplest ranking metrics require only the net energy flow

hrough a component’s border (or a connection) to be known

 Rosenberg and Zhou, 1988; Louca, 1998 ), while more sophisticated

etrics also take some structural information into account, e.g., the

et energy flow of neighbouring components ( Ersal, 2007 ), the re-

ation between the net energy exchanged, and the state variables

f the component ( Ye and Youcef-Youmi, 1999 ), etc. 

.2. Determination of the energy flows in object diagrams 

Modelica object diagrams, when modelling physical systems,

hare many similarities with bond graphs, which can be efficiently

sed for object-oriented acausal modelling. A Modelica library for

he modelling with bond graphs exists as the implementation was

ather simple and natural. Therefore, it is possible to adapt most of

he bond-graph simplification techniques to Modelica’s object dia-

rams. Of course, the energy concept in bond graphs is much more

nified in comparison with different Modelica libraries. 
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Fig. 5. Implementation of component ranking using energy-based metrics. 

Fig. 6. Car suspension system: model represented with a Modelica object diagram. 
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In Modelica, connectors usually contain a pair of the effort and

the flow variables, but unfortunately their product is not necessar-

ily an energy flow as in bond-graph formalisms. For example, be-

sides standardising the Modelica language, the Modelica Associa-

tion also provides the Modelica Standard Library ( Modelica Associ-

ation, 2010 ), which contains many elementary models (and corre-

sponding connector definitions) from almost all physical domains.

For example, connections describing one-dimensional heat conduc-

tion consist of temperature and heat flow rather than temperature

and entropy flow in the bonds of the bond graphs ( Cellier and

Greifeneder, 2009 ). 

Nevertheless, our analysis of the connectors defined and used

in the Modelica Standard Library (details for analog electrical cir-

cuits, planar mechanics, multi-body mechanics and transfer of heat

and mass can be found in Sodja (2012) , Sodja et al. (2018) ) showed

that energy exchanged in an interaction modelled by a connection

can, in most cases, be determined from the variables of the con-

nector as long as the connections describing a different physical

interaction cannot be connected together (e.g., connector that per-

mits ‘mixing’ of different fluids; in the Standard Library, a param-

eter (package) inside the connector is used to prevent such cases). 

Additionally, the net energy flow of a component in Modelica’s

models is not as explicitly available as it is in bond graphs, where

it is determined by a bond connecting the component with the

rest of the bond graph. It can still be calculated from the energy

flows of the component’s connections with the rest of the object

diagram: 

˙ E i (t) = −
n ∑ 

k =1 

˙ E i,k (t) (18)

In Eq. (18) , ˙ E i (t) denotes the net energy flow of the component,

and 

˙ E i,k (t) is the energy flow between the i th and the k th compo-

nent. 

4.3. Implementation of model reduction on higher hierarchical levels 

The model-reduction procedure performed on an object dia-

gram is similar to the one for the reduction of the equation sys-

tems shown in Fig. 1 : 

1. the model is simulated; 

2. the component-ranking metric is calculated; 

3. all the components whose rankings fall below a certain

threshold are either removed or replaced with simpler in-

stances. 

In order to evaluate an energy-based metric, the net energy

flows of the components (or their connections) must be calcu-

lated first (because they are not usually variables of the model).

Although this is possible to do from the simulation results, it is

not always straightforward; for example, it might require numeri-

cal differentiation. 

We implemented a prototype of component ranking in

the OpenModelica framework ( Open Source Modelica Consor-

tium, 2012 ). The procedure is done in two parts, as illustrated in

Fig. 5 . 

In the first part, an additional step, namely instrumentation,

is inserted into translation. After model sources are parsed and

abstract syntax tree (AST) is generated, the AST is traversed and

for every encountered connection statement of appropriate type

a variable and an equation for calculation of the energy flow is

added to the model. Furthermore, a graph of connections is built

simultaneously, so that relevant components and their energy-

flows can be extracted in the post-processing part of ranking. 

In the second part, ranking weights are calculated for all com-

ponents listed in the connection graph from the simulation results

and then components are ranked. 
Only a command line interface is provided in the prototype

mplementation. Instrumentation was implemented as a modified

unction for translation, called instrumentModel , which trans-

ates and instruments a model. The connection graph is saved

n the environment. After translation (and instrumentation), the

odel is simulated. Ranking of the model’s components is cal-

ulated and printed by the functions rankComponents and

ankConnections . It is possible to set a time window and

hoose among three different ranking metrics: RMS power, dubbed

ctivity metric, and importance vector. A simple ranking metric

dubbed activity metric ) defined by Louca (1998) 

 i = 

∫ t 2 

t 1 

| ̇ E i (t) | · dt (19)

s applicable for a wide range of physical models. ˙ E i (t) is described

ith Eq. (18) . The activity A of the i th component is the integral of
i 
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Fig. 7. A car hits a smooth curb: a low-frequency excitation signal is given as an 

input to the model in Fig. 6 . Other responses (displacement of the tyre ( mass_t ) and 

suspension system ( mass_s )) are depicted. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Ranking of components when the model from Fig. 6 is fed by the 

input shown in Fig. 7 . 

Element Activity [J] Relative [%] Accumulated [%] 

gravityForce_s 2,270.06 37.06 37.06 

spring_s 1,763.33 28.79 65.85 

ground 795.02 12.98 78.82 

mass_s 787.65 12.86 91.68 

damper_s 198.82 3.25 94.93 

spring_t 192.57 3.14 98.07 

gravityForce_t 92.98 1.52 99.59 

mass_t 24.53 0.40 99.99 

damper_t 0.53 0.01 100.00 
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Fig. 8. The reduced model. 
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a  
he absolute net energy flow that the element exchanges with the

nvironment (through connectors in Modelica) in the time interval

 t 1 , t 2 ]. 

When the model consists of several hierarchical levels, whereby

ach is presented with an object diagram, each hierarchical level is

onsidered separately. 

After the ranking of the elements is available, the model can

e reduced by removing all the elements that fall below a certain

hreshold (value of activity in our case). However, our current im-

lementation provides only the results of ranking in a printed form

a table). The ranking table can then be used to simplify the model

anually. Automatic reduction is a matter for future investigations.

.4. Example 

A model of the system depicted in Fig. 2 can also be built with

 Modelica object diagram using components from the Standard

odelica Library (Mechanics/Translation). An exception is the com-

onents of the nonlinear springs, which had to be custom-made.

he resulting object diagram is shown in Fig. 6 . 

The model was simulated using the same input (excitation) sig-

al as in the previous example, and the input signal together with

he model response are shown in Fig. 7 . The components of the

odel were ranked using the described procedure, and the activity

etric and the results are shown in Table 4 . The second column of

able 4 consists of the activities of all components calculated with

q. 19 . The third column contains the relative activities of the com-

onents (the total equals 100%), and the last column shows the ac-

umulated relative activities. This column very clearly shows how
any components have to be taken into account to obtain reason-

ble accuracy. 

For example, if the three bottom-ranked components, the

amper_t , the mass_t , and the gravityForce_t , together

mounting to less than 2% of the total systems’ activity, are re-

oved, the reduced model shown in Fig. 8 is obtained. The re-

ponse of the reduced model on the same input signal differs only

egligibly from the full-model response. As can be verified by sim-

lation, the maximum relative error is less than 0.1%. Similar re-

uction operations were also suggested with ranking with the one-

tep solver in the previous example, in which the damper_t , the

ass_t and the gravityForce_t are covered with the 2nd,

th, and 5th ranked terms (see Table 2 ). 

However, if we also proceed to remove the fourth bottom-

anked component, the nonlinear spring_t , the responses of the

ull and reduced model change more significantly that its activ-

ty would suggest. The main reason is the change of the operat-

ng point. In this case, the component should be replaced with

 correspondingly simplified component instead of being removed

ompletely. Our algorithm cannot currently handle such cases and,

herefore, this part is left entirely to the user. 

. Conclusions 

Contemporary modelling techniques and tools allow very de-

ailed and complex models to be built easily from already-prepared

omponents. However, the models of physical systems must match

eality, and currently only the modeller can take care of this re-

uirement by a thorough verification and validation of the model.

ence, handling of the models’ complexity will be an important

opic in the further development of modelling techniques and ap-

roaches. 

In this paper, we focused on two procedures implemented in

pen Modelica for the reduction of equation systems and object

iagrams. Due to the realisation of the preservation concept, the

escribed approaches are appropriate for efficient model verifica-

ion. 

The aim of our approach is not an improvement over the cur-

ent state-of-the-art model-reduction methods, but an extension

nd adoption of the existing methods to support highly hetero-
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geneous and multi-domain models, which can be built in Model-

ica by imposing as few as possible restrictions on the modelling

formalism or possible physical domains that can be used. With-

out doubt, the reduction method applicable to very heterogeneous

models cannot take into account all the reduction possibilities, but

when dealing with large complex models, every piece of informa-

tion regarding simplification can be useful. 

The described realisation-preserving model reduction for

generic Modelica models is a definitely a very difficult task. From

this point of view, even partial results, such as those described in

this paper, may eventually also pave the way for the introduction

of such techniques for more complex real industrial problems. Of

course, it is questionable if the described procedures can be fully

automated. We believe that an important feature will be the in-

teraction with the end-user who can properly uses many useful

insights and indications from such tools and guide the tool in the

process of model reduction in an interactive way, e.g., selecting the

parts of a complex model that should be subject to model reduc-

tion, selecting the proper techniques and, in general, bringing in

some expert judgement that an automated tool can hardly pos-

sess. We believe that the described model reduction in Modelica

and similar tools will never be a ‘one push-button activity’. It will

probably work on smaller parts in semi-automatic way with ap-

propriate manual operations. 

Although our model reduction (or only the component-ranking

procedure) can be applied to almost any model implemented in

Modelica, it has also other limitations, the most notable being an

inability to handle the initial problem of the model adequately.

Modelica permits specifying the initial conditions in various ways

(e.g., with the variable’s initial value, which can be a fixed or only

a guess value, by initial equations, etc.) and it is very complicated

to map the original initial problem to the reduced model properly.

Specifically, the reduction procedures do not lead to ’well-posed’

systems of nonlinear equations. Therefore, the reduction process

should also take into account this problem. One idea is to rank the

(eliminated) terms in a way that initial conditions of original and

reduced system are similar. However, this issue was not in the fo-

cus of our work. 
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Appendix. Vocabulary of expressions 

Model validation: It involves the checking of the overall mod-

elling procedure proofing that the model is an adequate represen-

tation of the reality. 

Model simplification: It indicates that modifications to a model

perform more concise representation but the behaviour of the orig-

inal and simplified models are exactly the same (e.g., the algebraic

elimination of an algebraic loop or the simplification of a block

scheme of a control system using the algebra of block schemes). 

Model reduction: Some less interesting aspects of the behavior

of the original model are omitted. Hence, the reduction only rep-

resents a portion of the behavior of the original model (e.g., parts

of the model can be exchanged with simpler ones - a lower order

or a linearised submodel). Therefore, the resulting reduced model

is thus valid only within a limited range. 

Bond graph: Graphical representation of systems, which could

show simultaneously the topological and computational structure,
nd which would be general, i.e., applied to all kinds of systems.

asically they clearly represent how energy is moving through a

omponent and, therefore, they can efficiently be used in model

eduction techniques. 

DAE - differential algebraic equations: A general form of model

escription in which a nonlinear function F of derivatives ˙ x , states

 , algebraic variables y and independent variable t equals zero 

 ( ̇ x , x , y , t) = 0 (20)

They are distinct from ordinary differential equation (ODE) in

hat a DAE is not completely solvable for the derivatives of all com-

onents of the state vector x . Numerical simulation of continuous

ystems, which is based on numerical integration, is much easier,

aster and more efficient if it is possible to convert DAE form into

DE form. 

Example of a system described with DAE: 

˙ 
 + sin (y ) = sin (t) 

y − x = e −0 . 9 y cos (x ) 

x (0) = 1 
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